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The Maryland Functional Testing Proyram (MFTP) uses

the Rasch model as the statistical framework for the analysis of test
1tems and scores. This paper is designed to assist the reader in
developing an uuderstanding of the fit statistics in the Rasch model.
Background materials on application of the Rasch model in statistical
analysis of the MFTP are provided, studies of item fit and causes of
item misfit are outlined, and recommendations for uses of fit
statistics are made. It is recommended that: (1) since the number of
items detected as "misfitting" is a matter of choice in selecting the
fit statistic from a wide range of fit statistics produced by BICAL,
and since there are no sound statistical procedures for selecting
items on the basis of fit indices; test of item fit should not be
used with some arbitrary critical value to make automatic decision
for eliminating them; (2) i1tems that have total or between "t" wvalues
larger than 2.00 should be investigated for flaws in the construction

of the itenm,

unusual item content, "order effects" resulting from its

position i1n the test, and level of difficulty; (3) if an easy item
does not fit the model because it occurs near the end of the test
which low ability students may not reach time for the test might be
extended; (4) guessing i1s inherent in the use of multiple-choice
items and such 1tems should not be deleted for this reason; and (5)
items flagged by various tests of fit should be studied by subject
matter experts to generate possible hypotheses about the reason for
misfitting items. Fat statistics produced by BICAL-1980 are
described, with emphasis on the sample size effect on fit indices,
and computation of these statistics are explained. One data table 1s

included. (TJH)
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The purpose of this paper is to assist the reader in
developing an understanding of the fit statistics in the Rasch
model. First, background materials on application of the Rasch
model in statistical analysis of Maryland Functional Testing
Programs will be provided. Second, review of studies of item fit
and causes of item misfit will be listed and recommendations for
uses of fit statistics will be made. The last section of this
paper concentrates c¢n describing fit statistics produced by
BICAL~1980. cComputation of these statistics is also explained.

Background

The Maryland Functional Testing Program uses the Rasch model
as the statistical framework for the analysis of test itemz and
scores. This analysis produces data which are used in (1) iten
calibration, (2) item selection, (3) equating of scores, and (4)
generating scaled scores. The test items are field tested,
analyzed, and included in item banks with the associated
statistical indices. A major question and the reason for this
review is: What are the criteria that should cause an item to be
rejected for misfitting the Rasch model? A prior question is:
What are the effects of including misfitting items in a test? 1Is
there a sound procedure available for selecting items for the
MFTs on the basis of fit statistics.

An advantage of Rasch model is that its simplicity makes it
easy to apply the model in solving many measurement problens
(Gustafsson, 1980). 1Items can be described with item parameters
and persons can be described with person parameters, both on the
same scale. This allows the probabilistic prediction of the
response of any person to any item, which can be compared with
the actual response to give us an idea about how appropriate the
Rasch model is for the data set we are using. Divgi (1981) lists
three properties of the Rasch model as follows:

1. The number correct is a sufficient statistic for the
estimation of ability. The pattern of right-wrong responses does
not provide additional information about ability once the total
score is known (but it can tell us something about the items).

2. Conditional maximum likelihood estimates of item parameters
equal the true values when samples are infinitely 1large.

Conditional maximum likelihood estimates cannot be obtained with
other models.

3. It is possible to compare difficulties of two items or
abilities of two persons without having to estimate any other
parameters. Rasch (1966) called this phenomenon "specific

objectivity".

Given these properties, how do we decide if the Rasch model
is appropriate for our test? One of the first issues to consider
is the purpose for which the test is being built. Wright (1978)
deals primarily with a test to discriminate among people, whereas
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Sabers and Jones (1982) are trying to develop a test to measure
the extent to which the curriculum has been mastered. They quote
Buros (1978) as arguing that selecting items for the purpose of
discriminating among people instead of to to measure learning
results in a test of questionable validity. This argues against
a strict policy of rejecting items for not discriminating among
people, as it may result in spurious fit only (Gustafsson, 1980).
Gustafsson suggests that for a scale to measure individual
differences, highly discriminating items would be most useful,
while these might not be best for a scale to assess curriculum.
Further Sabers and Jones (1982) say that the Rasch model is a
good model not because most items will f£it to the model, but
because it represents the kind of items most desirable on a
measuring instrument.

But are we selecting items to fit a model or a model to fit
our items (Sabers and Jones)? The basic principles of a good
test are the same regardless of what mathematical model is
selected for the analysis. Clear tust specifications and tight
item specifications will most often provide a reasonably good
test by any standards (Popham, 1978).

Item selection occurs at least twice in the history of a
test built from an item bank, once in the selection of items for
the bank, and again in selection of items for a specific test.
If a good job is done at the first stage, the second will be
easier. When a large number of items have been generated and
judged to be acceptable by non-statistical procedures, the

question becomes how to decide which of the item fit the Rasch
model.

Many tests are designed to 1learn about people at a
particular point on the ability continuum. If the test will be
used to determine mastery, it is at the cutting point that the
most precise measurement is desired (Cook and Hambleton, 1979;
Lord, 1977, 1980; Wright, 1977). But the design of tests to
maximize the amount of information yielded at a point of interest
is not a subject for this paper.

Review of Studies of Item Fit

A major line of research has dealt with the fit of various
types of test items to the Rasch model, as indicated by those
item fit indices included in the BICAL programs or by other ad
hoc¢ indices of fit. But first, because most of the studies
reviewed here have used fit indices produced by the BICAL
program, the reader is encouraged to read the last section of
this document in which different fit statistics are defined and
the computation of the statistics is explained.

Wright and Panchapakesan (1969) developed a test of fit of
items to the model. The test is based on comparisons between the
observed and the expected frequencies of correct answers te each
item at different levels of ability. This comparison is checking
to see if different groups fit statistic indicates that too many




high ability people, as identified by total score, missed the
item, or that too many low ability people answered that item
correctly. The expected value (mean) is one and its standard
error is suggested as a rule of thumb for "too large."

A chi-square test is often used to test the fit statistics,
but the actual distribution of test statistics are unknown. The
chi square, z or t distributions have been relied on, but monte-
carlo studies have shown that, while the means of the test
statistic distributions may conform to the expected ones, the
variance may differ substantially (Gustafsson, 1980).

Using the standardized residual in selecting items for tests
has been questioned by George (1979). (The standardized residual
has also been called the "mean squared error" and the "fit mean
square".) George suggests ‘hat using standardized residual is
not appropriate for use in selecting items and gives several
reasons for the suggestion. He points out that the test is very
conservative and rarelv rejects items because the sample size is
always one that causes the standard deviation used in the
dencminator of the standardized residual formula to be too high.
Further he states that the use of the normal approximation te the
binomial is a serious problem. Examples are presented to show
the nature and magnitude of error introduced when standardized
residuals are used under certain conditions. Some of the
conclusions from his data are: (1) Easy items usually appear to
fit better than they should, (2) Difficult items tend to misfit
because low ability students may quess the answers correctly.
When the latter happens a very large value is added to the sum of
squared residuals resulting in a large mean square residual, (3)
Items having steeper item characteristic curves fit the Rasch
model best, even better than those having larger discrimination
indices. This would account for the high percentage of fitting
items found in tests that have been developed using classical
criteria of item quality.

Divgi (1981) has also criticized using the mean squared
error statistic as an index of fit to the Rasch model. Being
concerned about the correlation between the mean square fit. and
item difficulty he proposed a new fit statistic based on "...an
approximate quadratic depends of the standardized residual on
estimated ability." The item responses from eight levels of the
Survey Reading Test from the 1978 Metropoli an Achievement Tests
were tested for fit using Wright's "fit mean square" and his new
fit statistic. From 48% to 82% of the items were identified as
misfitting by his new fit statistic, while the fit mean square
reflected only 16% of the items. Divgi suggests that many
studies have found test data to fit the Rasch model only because
their tests of fit lacked power to detect deviations from the
model.

Wright, Mead, and Draba (1976) suggest a test of fit for the
Rasch model that involves using an analysis of variance on the
variation remaining in the data after removing the effect of the
fitted model. This allcws not only the determination of the

oW




general fit of the model, but also assists in pin-pointing
guessing and item bias.

Gustafsson (1980) claims that testing individual items for
goodness of fit to the model is illogical because the basic
requirement of the Rasch model is that the items be horogeneous.
What is tested is whether the items fit with each other, not
whether they fit the model. He uses this reasoning against what
he says is standard procedure for obtaining fit to the Rasch
model. First, a set of items is administered to a sample of
persons and an overall test of fit is computed. If this test is
significant, and it usually is, the fit statistic for each item
is computed and those items which do not fit are excluded. This
process is repeated until no misfitting items remain. He argues
that this process should rarely be used, for s2averal reasons.
One reason is that *the tests most often used represent only a
partial evaluatinn of fit to the model, and they can fail to
detect even very serious deviations from the model. He also
argues that this may be trading off between different violations

of the model assumptions. He feels this process results only in
spurious fit.

Gustafsson (1980) proposes an alternative strategy that
begins with identifying a likely source of poor fit to the Rasch
model. If there are possible causes such as guessing and
speededness, steps should be taken to eliminate those causes.
Any item heterogeneity that is severe might be resolved by
grouping items into homogeneous subsets, or excluding a few items
that are poorly constructed. He further suggests a cross-
validation of the derived scale. It would appear that Gustafsson
has reflected item statistics altogether.

Canner and Lenke (1980) reviewed the misfitting items from a
large number of tests covering grades kindergarten through
twelfth grade in a variety of content areas. Their criterion of
misfit was th: mean square fit statistics adjusted for sample
size by the factor (1500/N). They found that many of the
misfitting items stood out from the main set of items and
appeared to be different in some distinct way. There rtrere some
consistencies in the subject matter areas. For example, 89% of
misfitting spelling items were those in which the stimulus word
was presented as an incorrectly, rather than correctly, spelled
word. In the reading comprehension tests, the inferential items
misfit more frequently than the literal comprehension items. In
one of the mathematics tests they found three of four misfitting
items to be dictated items requiring computation. Items dealing
with the metric system also tended not to fit the Rasch model.
They concluded that:

.. items measuring knowledge of specific content may not
fit the Rasch Model if the item content is not always
taught (e.g., metric items) or does not follow a regular
pattern of instruction at particular grades and times of

year (e.g., spelling skills at second grade level,
sounds of blends at first grade level)."(p.1ll)




Douglas (1981) examined the relationships between selected
BICAL tests of item fit and item bias (and score invariance). He
used data from the Michigan State University Vocabulary Placement
Test given to freshmen. The test was speeded and independent
measures of speededness and item bias were available. He found
the BICAL "between group t" and the "Discrimination" values to be
highly correlated with indices of bias and of stability of item
difficulty estimates, while the "total t" and standard error of
difficulty values were not. He recommended that the between
groups t and the discrimination indices be five more weight as
indicators of item fit. Implied in this recommendation is
acceptance of the criteria, “detection of biased items."
However, the recommendation might not be appropriate for tests
that are not speeded or do not contain biased items. An
important pcint made by Douglas is that LOGIST might be preferred
over BICAL for speeded tests, even if only one item parameter is
being estimated, because BICAL scores unreached items as
incorrect while LOGIST does not.

Reckase (1981) summarizes the results of his study of fit to
the one parameter model:

...there seems to be no good procedure for selecting
items with the one-parameter logistic model. Not only
do the fit statistics not work well, but no reason can
be thought of for selecting items with discrimination
parameters equal to the mean discrimination in the pool.
Typically, use of the best items in a pool would seem
desirable, as opposed to using the nediocre items as

suggested by selection cn the basis of one-parameter
model fit (p. 42).

Attempts have been made to identify causes of item misfit to
the Rasch model. Mead (1976) studied the causes ¢° item misfit
using residual analysis (for the definition and the computational
formula of residual refer to the last section of the paper).
Theortically when the residuals are piotted against (ov - bi)
they should fall on a horizontal line through the origin.
Systematic sources of item misfit appear as departures from the
horizontal line. Mead listed several sources of misfit, and the
effect of the misfit on the observed item characteristic curve.
He described, for example, that random guessing on an item will
be reflected in lowered discrimination of the observed item
characteristic curve. The observed item characteristic curve for
a biased item would appear to be highly discriminating. This
kind of analysis would not be practical as a routine procedures
for idenfitying misfitting items. However, familiarity with the
technique of residual analysis is useful for staff members
involved in the assessment of test items.

Generally, anything which causes a person's response to
differ from what is ..pected by the model is a source of misfit.
Mead (1976a) demonstrated that Items near the end of a test will
appear to be more difficult than they really are in speeded
tests. Also, items near the end of a test appear to have too




high a discrimination since many low ability examinees will not
reach them. Douglas (1981) reported that "between groups t" and
the "discrimination" indices (produced by BICAL program) were
more sensitive than the "total t" for detecting poor item fit
related to test speededness.

Guessing is reported to be a major source of item misfit for
multiple-choice items. Usually when an examinee of low ability
answers a difficult item correctly (probably by guessing) a large
value will be added to the fit index. However, a lower value
will be added when an examinee of high ability misses an easy
item (probably due to carelessness) (George, 1973). Also it has
been demonstrated that guessing causes easier items to have very
high discrimination and difficult items to have too 1low
discrimination (Gustafsson, 1979).

If an item is too easy or too difficult for a subgroup of
the population, it may affect the item fit indices. The subgroup
of the population might be based on the variable such as sex or
ethnic group. Specific study is undertaken by the Program
Assessment, Evaluation, and Instructional Support Branch to
detect the possible forms of item bias such as sex and ethnic
bias.

Lack of unidemensionality of a test might affect tae item fit
indices. If a given test includes a set of items assessing a
different ability from what was assessed by the majority of the
items is the test, then the slopes of their item characteristic

curves will be affected and as as result the items may not fit
the model.

Lack of local independence might affect the item fit incices.
The assumption of local independence is equivalent to the
unidimensionality assumption. For example in a reading
comprehension test, if an item is answered correctly Lecause it
is based on a reading paragraph, then a factor other than the
ability of interest is affecting the observed response. This
phenomencn may increase the item's misfit index.

The sample size effect on fit indices produced by BICAL has
been studied systematically. Rentz and Ridenour (1978) reported
the results of their study that the "mean square fit statistics
tend to inflate, with the same degree of fit, as sample sizes
increases" (p. 3). They adjusted for the inflation by rescaling
mean squares by a factor of 1500/N, where N is the number of
subjects in the sample. Hambleton and Murry (1983) used
simulated data and the "t-fit" statistic from the BICAL program
(Wright and Mead, 1977) to show that "...the number of misfitting
items ranged from 5 tc 38 of the 50 items when sample size
increased from 150 to 2400." (p. 73) These studies make it clear
that the size of mean sqaure fit indices are related to the
number of persons in the analysis sample. This indicates that
with suall sample sizes items which have a high degree of misfit
may be undetected, and with a large sample sizes many good items
may be identified an misfitting items.




Recommenrdations

On the basis of review of the 1literature, the following
recommendations should be considered for identifying misfitting
items and for using fit statistics in the selection of items for
inclusion on the Maryland Functional Tests.

1. The number of items detected as "misfitting" is a matter of
choice in selecting the fit statistic from a wide range of fit-
statistice produced by BICAL. Test of item fit should not be
used with some arbitrary critical value to make automatic
decision for eliminating items. There are no sound statistical

procedures for selecting items for the MFTs on the basis of fit
indices.

2. Items which have total or between t values larger than 2.00
should be investigated for flaws in the construction of the item,
unus jal item content, "order effects" resulting from its position
in the test, and difficulty. When a flawed item is found, it
should be revised or thrown out.

3. It is possible that an easy item may not fit the model
because it occurs near the end of the test where low abiliuvy
studente may not reach it at all. If this causes a problem, the
time for the test might be extended. Otherwise, the misfitting
phenomenon may be accepted as part of the measurement €rror, or
as a penalty for slow work on the part of the examinee.

4. One of the common causes of misfitting item is that 1low
ability students answer the difficult item correctly by perhaps
guessing. This phenomenon is inherent in the use of multiple

choice items and there is no reason to delete such items from the
test.

5. Items flagged by various tests of fit should be studied
carefully by subjects matter experts to generate possible
hypotheses about the reason for misfitting items.

Fit Statistics in BICAL Version 1980

The purpose of this section is to describe the fit
statistics produced by BICAL-1980. The formulas and steps
involved in the BICAL calculation will be presented. Then the
theoretical rationale and uses of the fit statistics is
discussed. Commonly, the following equation is called the
Rasch model:

exp (ev- bi)
Pvi=P(xvi=1l/6v,pi) = ==—m—meemeaaoo (1)
l+exp(6v = bi)
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Where:
ev=ability of person vi
bi=difficulty of item ij

This model simply states that the probability of a correct
response (xvi=1l), given a person's ability ©v, taking an item
with difficulty values of bi is a function of the difference
between person ability (6v) and and item difficulty (bi).

The key concepyt in understanding item fit to the Rasch model
is the residual (rvi). Residual is the difference between the
probability of a cerrect response (Pvi) and the observed outcome.

Residual rvi = (Xvi - Pvi) (2)

The standardized residuals can be calculated by dividing
each residual by its standard deviation

(Xvi - Pvi) (Observed - Expected)
ZVi = ccccmccmccaaaa = eeercccmccccc e (3)

The standard residual is expected to be distributed normally with
a mean of zero and a variance of one. The standardized squared

residual (Zvi) can be determined by squaring Z scores and summing
them across persons:

ZVi = ——mmm—————eo (4)

The squared standard residual has an approximete chi-square
distribution with one degree of freedom. Standardized squared
residuals are summed over all persons to evaluate fit of an item.
This is referred to as Fit Mecan Square Total in BICAL Version
1977 and is calculated by:
2
T Zvi
Fit Mean Square = ——eceececcaaao (5)
N-1

N = number of students in the score groups.

More precisely,

This is the squared standard residual Z inflated to
one degree of freedom per person and then averaged over
persons. It will be large for an item when there are
too many relatively high ability persons who fail on
that item and too many relatively low ability
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persons who succeed. What is 'too large' a fit mean
square depends on the requirements of the particular
situation. The expectel values and standard errors of
these mean squares are 1 and (2/f) ,where f is the
number of persons trying the item. More than three or
four standard errors greater than one seems to be a
reasonable rule of thumb for 'too large.' But items
found to 'misfit' must also be carefully studied for
the presence of a substantive explanation for their
statistical implausibility before wise decisions

concerning their use can be made. (Wright and Mead,
1978)

As demonstrated in equation 1, the Rasch model is based on
the assumption that only one item parameter (difficulty = b), and
one person parameter (ability = ©) are needed to describe what
happens when an examinee attempts an item. When this assumption
is correct, knowledge of an item's difficulty and a persons
ability allows us to formulate the probability statement of the
person correctly answering the item. This probability (expected)
can be compared with the observed score to check whether the
prediction holds. If the observed and expected number of correct
responses are statistically equivalent, then the conclusion is
that items and persons fit the Rasch model. The fit of items and
persons to the RAsch model is provided in BICAL Program. The
probability of a person (v) with ability ov correctly answering
an item (i) with the difficulty bi is Pvi and is obtained using
equation 1. The difference between the observed score and the
probability of a correct response (expected by the model) is
called residual. The residual is small if the observed response
is in the direction predicted by the model, or large if it is
not. For example, if an examinee has a 0.95 probability of
answering an item correctly, and indeed answared the item

correctly, therefore receiving a score of one, the residual would
be very low, (1-0.95) = 0.05.

To make it interpretable, the residual is divided by its
theoretical standard deviation. The standardized residual is
distributed normally with a mean of zero and a variance of one
(2-statistics) (See equation 3). When Z-statistics are squared and
summeq across persons, it produces a statistic that has an
approximate X distribution that can be used to evaluate fit of an
item (See equation 4).

\
\
\
|
|

BICAL Version 1980 produces five item fit statistics. The
program also has an opticn to delete misfitting persons to the
model. The important point is that the residual is the basic
"building block" for all item fit statistics. It may be used to
calculate a Z-score, T-score or chi-square statistic, but it
always reflects the difference between what the model expected to
happen and what w'.s actually observed. Residuals can be summed
across items to cotain person fit, or summed across the examinees
to obtain item fit statistics. In "Between Fit" statistic
examinees are grouped on the basis of their ability. This
statistic shows whether the groups have responded as the model
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expected. In the following section, the item fit indices
produced by the BICAL Version 1980 will be described.

Between Group Fit Statistic

The between ¢roups residual (standardized) for group g on
item i is computed using the following equation:

2gi = = —etmmmmmmmmmmeeeeo (6)
nr. Pri Qri

Where:
Sgi = Proportion of examinses in group g answering item i
correctly.
nr = number of examinees with total score r
Pri = expected probability of success for ability r on
item i
Qri = 1 - Pri

sum across all abilities r within group g

Equatlon 5 can be transformed into a mean square among the m
groups using the following equation:

L
(2gi) (-=--=-==—------ ) (7)
(L-1) (N-1)
Where:
L = Number of items
N = Number of groups

As the attached example of the BICAL program demonstrates,
six groups of students responses are formed on the basis of total
score. In other words, groups are formed of those students whose
scores fall within the range of scores in each category. This
grouping process results in similar abilities within each student
group and different abilities among the six groups. In the
attached example, 763 students whose score range was 5-55 form
the lowest ability group while 584 students who score range was
75-76 form the highest ability group. The Rasch model expects
that groups at the high end of the ability have a larger
proportion of students correctly answering an item than groups at
the low =2nd of ability.

To compute "Fit Between" statlstlcs, the following steps
should be followed. Note that in the following process the
ability groups are considered one at a time.

1. Calculate the probability of a correct response for each group




using equation 1.

2. Multiply this probability by the number of examinees within
that ability group to obtain the expected number of examinees
within that ability group answering the item correctly.

3. Do this for each ability within each ability groups.

4. Sum these expected nunibers over all of the abilitjes in eacl
group. This results in the nurYer of pe nle in the particulas
group (for example, lowest ability group) that would be expected
to answer the it..m correctly.

5. Subtract the expected value obtained in step 4 from the actuil
number in the group who answered the item correctly. This
produces the residual for a given ability group.

6. Standardize the residual (for each group) by dividing it by
the standard deviation of these residuals using equation number
five. The standard deviation is found by multiplying the
probabhility of a correct response by the probability of incorrect
response weighted by the number within ability O, summing across
the abilities in that group, and taking the square root of this
quantity.

7. The results obtained in step 6 is the standardized residual or

Z score. Then the mean square statistic can be calculated using
equation 6. To do this, simply square the 2 scores, summ across
the six groups, and weight them by a function of the number of
items and the number of groups.

8. Finally the mean sqguare statistic is converted into a t-
statistic. The t-statistic has a convenient mean of zero and the
standard deviation of one. This statistic is labeled "Fit
Between" in the BICAL output. The mean square statistic is
converted into a t statistic using the following equation:

tgi = avgi - a + 1.0/a (8)
where:
a = [4.5(m~-1))

The "Fit Between" calculated using the . _.ation 7 is shown
in the attached BICAL output in the table headings
"Item Characteristic Curve," "Departure From Expected ICC" and
"Ttem Fit Statistics." The first two sections show the expected
ana actual performance of the six ab’lity groups for each item.
The item characteristic curve shows the proportion of examinees
in each of six groups that answered the item correctly. The
Rasch model expects this proportion to be smallest for the first
group. and largest for the sixth group. Simply stated, the
proportion answering the item correctly within a group increases
as the ability increases. The section labeled "Departure From
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Expected ICC" shows the residual for each of the groups on each
item. If the residual has a positive sign, it means that too
many people answered the item correctly in that group. The
negative value of residual means that too many people answered
the item incorrectly. If a large positive residual for the first
group (the lowest ability group) is followed by negative
residuals for the remaining five groups, it indicates that
examinees in the first group answered the item correctly perhaps
by guessing. The third section in the BiCAL output is labeled
"Item Fit statistics." 1In this section "Fit Between" is reported
for each iten. A high "Fit Between" statistic indicated that
groups of different ability are not responding to an item in the
way the model expected. "Fit Between" are assumed to have a
standard deviaiion of one and the mean of zero. Items with "Fit
Between" greater than three should be examined. In other words,
if a low ability group of examinees answered an item correctly
more fthan expected, there is something strange about that item.

Weighted Mean Square (WTDMNSQ)

For WTDMNSQ, each examinee defines an ability group. The
difference between the observed response and what would be
expected is the residual. The residuals are squared and summed
over examinees. This value is divided by the sum of variances of
respcnses of examinees of ability O to an item of difficulty ™.
The result is WTDMNSQ which can be expresses in terms of tne
following equation:

WIDMNSQ =  =cocceme——ee (9)

The standard deviation of the WTDMNSQ is derived using the
following equatien:

s[(P.Q)-4 (P.Q)]°
MNSQSD =  Smmmmcmmmm—mmmomio (10)

It is also called mean square standard error.

The WTDMNSQ has an expected mean of 1. As the observed item
responses depart from the expected value of 1, WTDMN Q wiil
increase. The weighted mean square fit statistics and their
associated standard deviations are listed in the "Item Fit
Statistics" produced by BICAL Program.

Total T Fat Statistic "T-Tests Total"

The total t-statistic is listed in the "Item Fit Statistics’
table produced by BICAL program T-Tests Total Statistic is
calculated by simply weighting the standardized WTDMNSQ. The
purpose of this transformation is to come up with the same
distribution for each item.

13
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T-Tests Total = (WIDMNSQ 1/3 - 1) (3/si) + (5i/3) (11)
where:
WTDMNSQ = weighted mean square for item i
Si = mean square standard deviation for item i
T-Tests Total has the expected mean of 2zero and the expected
standard deviation of one. Wright, et.al. (1980) indicates that

in practice T-Test Total (which are assumed by definition to have
a standaxd deviation of one) have been found to have standard

deviation as low as 0.7 when the data fit the model. Then he
suggests that "...values larger that 1.5 ought to be examined for
response irregqulation. Certainly "total t f£it" values greater

than 2.0 are noteworthy" (p. 13).

Error Impact "ERRIMPAC"

The impact of item misfit on item calibration is computed by
subtracting one from the square root of the weighted mean square.
This statistic is listed in the "Item Fit statistics" produced by
BICAL Program.

Error Impact = (WTDMNSQ vz _ 1) (12)

The error impact provides a measure of the proportional
inflation that the misfit of the item may have on the standard
error of the item calibration. The error impact is a function of
the difference between weighted mean square WTDMNSQ and its
expected value of one. For example, if there are items in a
given test, the inflation in measurement error over the test
thatcan be 7§tributed to one item's misfit would be equal to
(WTDMSQ/L) /2,

Discrimination Index "DISCINDX"

The discrimination index labeled "DISCINDX" in the BICAL
output is calculated using the following steps: (1) finding the
difference between thz residual for person-item combination and
average residual for that item, (2) multiplying the cesults by
the differ nce between the person ability and the item
difficulty, (3) summiong over alal persons and (4) dividing this
sum by the sum over persons of difference between person
abilities and the item's difficulty, and (5) add one to the value
obtained in step 4. The computational steps are summarized into
this equation.

14
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standardized residual

Where: Pvi = probability of person v answers
correctly item i
Xvi = actual response of person v on item i
Y.i = average of Yi for item i overall

persons.

B° "AL calculates the average slope for all the items. This
averag. slope is given a value of one. The slope of all items'
characteristic cures are compared with the value of one. The
difference is represented by the discrimination index. It should
be noted that this discrimination index is not the discrimination
index used in classical testing theory. It tells us whether the
item characteristic curves for the entire test. For example, if
the item discrimination value for an item is one, it means that
the observed ICC and average ICCs are identical. When the
observed ICC is less than the average ICC, the discrimination
value will be less than one. A high discrimination value for an
item indicates that the particular item discriminates among
abilities better than the average items on the test. Wright
(1980) suggests that a hlgh discrimination value may be the
symptom of probk. :ms causing by an interaction between the item
and the subjects. An example of this situation would be
"speededness," where the low ability students might not reach the
items at the end of the test. Low ability students would have
large residuals on the final items which results in a high
discrimination values for the final items.

15
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